
Tutorial Version 1.4 Page 1

Robocode, Java, and Trigonometry Tutorial
Jacob Cole

Table of Contents:

1. QuickStart
a. What is Robocode?
b. Getting Robocode

i. Downloading and Using Robocode
ii. Installation

iii. Running Robocode
iv. How Robots Work
v. Battling

vi. Editing/Creating Robots
vii. Viewing Documentation

c. Advice for Beginners
d. Challenge for Beginners
e. Downloading Robots

2. Intro to Java
a. Key Information
b. Comments
c. Variables

i. Variable Declaration
ii. Variable Types

iii. Printing Output to Screen/Basic Math
iv. Variable Scope

d. Methods
i. Definition and Basic Syntax

ii. Method Arguments
iii. The return Statement
iv. Method Overloading

e. Conventions
3. Anatomy of Robot Source Code

a. Package and Import
b. Robot Name and Type
c. Global Variable Declarations
d. The run() Method

i. Startup Code
ii. Main Loop

e. Event Listeners
4. More Java Programming

a. if Statements
i. Definition and Syntax

ii. Nested if Statements
iii. else if Statements
iv. Conditions and Boolean Operators
v. The Ternary Operator

Tutorial Version 1.4 Page 2

b. Using Built-In Methods
i. Calling static Methods

ii. Calling non-static Methods
iii. Type Casting and Conversion Methods

1. Definition
2. String to Number Conversions
3. String to char Conversions
4. Primitive Type to String Conversions
5. Converting between Primitive Types

c. Java Math
i. Operators and Rules

ii. Modular Arithmetic
iii. Shortcuts

d. Loops
i. Definition

ii. While Loops
iii. Do-While Loops
iv. For Loops

e. Arrays
i. Definition and Syntax

f. Break and Continue Statements
5. Appendix A: Headings versus Bearings

a. Definition
b. Absolute Bearings

i. How to Turn Towards a Target Point
1. Writing the Absolute Bearing Method
2. Using atan2

6. Appendix B: Trigonometry Tutorial
a. Unit Circle
b. Trigonometric Ratios
c. Use of the Unit Circle
d. Inverse Trigonometric Functions

i. Definition
ii. The Sign Problem

e. Radians
i. Definition and Explanation

ii. Radians to Degrees
f. Polar Coordinates
g. Solving Oblique Triangles

i. Intro To Solving Oblique Triangles
ii. Law of Sines

iii. Law of Cosines
7. Appendix C: A Sample Robot
8. Appendix D: Historical Robots
9. Appendix E: Robocode Physics and Mechanics

a. Robocode Time and Space

Tutorial Version 1.4 Page 3

b. Robot Structure
c. Movement Physics
d. Energy
e. Collisions

10. Quick Reference Sheets:
a. Robocode/Java Quick Reference Sheet
b. Useful Methods Quick Reference Sheet
c. Trigonometry Quick Reference Sheet

Note: To view this tutorial best, you should hide the spelling/grammar “errors” in this
document.
Windows: go to Tools > Options, click on the Spelling & Grammar tab and check the
Hide spelling errors in this document and Hide grammar errors in this document
checkboxes.
Macintosh: go to Word > Preferences, click on Spelling and Grammar, and then check
the Hide spelling errors in this document and Hide grammar errors in this document
checkboxes.

Tutorial Version 1.4 Page 4

QUICKSTART

What is Robocode?
Robocode is a virtual tank battling game, in which you write the AI for the tanks and
send them out to fight. When you make a good robot, you can submit it to the Eternal
Rumble at http://robowiki.net, in which you battle against people from around the world.
Everything is in Java. Robocode has its own special libraries.

Getting and Using Robocode
Downloading Robocode
Go to http://robowiki.net/cgi-bin/robowiki?Robocode and click on (on the top bar) the
download link.

Installation
Double-click on the setup file (will be .jar) and follow the instructions.
Note for Windows: You should probably install robocode in Program Files, even though
it defaults to the C drive (just replace C:\robocode with C:\Program Files\robocode when
it asks you during the installation). If there is a problem, see the Beginners’ FAQ. Don’t
add robocode to your Start menu when it asks, it sometimes messes up.

Running Robocode
Windows: double-click on robocode.bat
Macintosh: double-click on robocode.jar

How Robots Work
See Appendix E: Robocode Physics and Mechanics (IMPORTANT!)

Battling
To start a new battle, go to the Battle menu > New and then double-click on robots or
select them and click add robot.
To see the radar beams of the robots during a battle, go to Options > Preferences and then
check the View Scan Arc box.

Editing/Creating Robots
To go to the robot editor, go to the Robot menu > Editor. To make a new robot, go to File
> New > Robot and follow the instructions.

Viewing Documentation
To see the documentation for robocode, go to the help menu and click on Robocode API.
Once in the API, click on Robot or AdvancedRobot in left side bar and scroll down.
Those are the only things that are important for new robocoders.

Note: API means Application Programming Interface. It is basically the documentation
of a program. In robocode, the API shows all the special methods, sections of code that
can be run on a command (see below), that you need to program your robot (like
ahead(distance)) to move your robot forward).

Tutorial Version 1.4 Page 5

Advice for Beginners
Have fun. Don't give up too quickly. Robocode takes determination and persistence.
Don't despair at the length of the tutorial, you don’t have to read it all at once. Just read
up to Anatomy of Robot Source Code to get started. Also, check out the sample robot
included in this tutorial.

Also, read the Beginners’ FAQ, the other FAQ, and the Game Physics page. Note that a
robot’s gun spins with its body, and its radar spins with its gun.

Challenge for Beginners
To start out, experiment and try to make a robot that acts like the sample walls bot. First
learn how to make the robot go forward, and then work on turning onHitWall. HINT: the
easy way to make a walls bot involves the getBearing() method (explained in Headings
versus Bearings).

Places to Go and Things to See
Go to http://robowiki.net for EVERYTHING ROBOCODE. It teaches targeting, moving,
strategies, and much more. Robocode is BIG (thousands of people).
Go to http://robowiki.net/cgi-bin/robowiki?BeginnersFAQ for a beginner FAQ
Go to http://robocode.sourceforge.net/help/robocode.faq.txt for another FAQ
Go to http://robowiki.net/cgi-bin/robowiki?GamePhysics for the physics of robocode.
Go to http://java.sun.com/j2se/1.5.0/docs/api/ for info on Java (the API).
Go to http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Math.html for the Math class API
(scroll down to method summary).
Go to http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html for the String class
API (scroll down to method summary).
Go to http://java.sun.com/docs/books/tutorial/ for an in-depth Java tutorial.
Go to http://www.robocoderepository.com/ to download other people’s robots.
Go to http://www.robocoderepository.com/BotSearch.jsp to search for other people’s
bots to download.

Downloading Robots
You can download and try other people’s robots (and if they are open source, use their
source code). Simply save the robots’ .jar files in the robots directory in the robocode
folder (this is wherever you installed robocode). If robocode is already open, hit F5 in the
new battle dialog box after you downloaded the robot. Watch them battle for
inspiration. To see the source code of open source robots, go to the robot editor, and click
on File > Extract downloaded robot for editing, then select the robot. See the Historical
Robots section for advice on which bots to get.

Tutorial Version 1.4 Page 6

INTRO TO JAVA

Key Information
There are a few basic things that you must understand about Java before you start
building ownage robots.

Syntax is the punctuation of a program, the format that the compiler (the thingy that
turns the stuff you type into stuff the computer can read) can understand. In Java, source
code (the stuff that you type) is stored in .java files, and compiled programs are stored in
.class files. In Java, a main component of the syntax is the semicolon (;). Semicolons are
needed after every complete statement.

Comments
In Java, there are 3 types of comments. Comments are things you add to code to explain
what it does. Comments do not affect your program in any way.

//comment (1 line)

/*
multiple lines
of comment
*/

/**
multiple lines of comment (double star just means special comment that
can be used for documentation)
*/

I will mostly use the // style comments. When I put stuff in italics it means to input a
name for the value in real life (e.g. if your initials were “bc,” in real life code you would
substitute bc for yourInitials).

Variables
Variable Declaration
In Java, you declare variables like this:
variableType variableName;

For example
int myInteger;
String myString;
char myChar;

Variable types and names are cAsE sEnSiTiVe, just as everything is in Java. Note:
variable names must start with letters or underscores. Also note that variables cannot
have names that are Java keywords. If you are having strange compile errors, try
changing the names variables that seem suspicious.

Variable Types
Primitive (“basic”) Variable types (common ones):

Tutorial Version 1.4 Page 7

int – holds from -2,147,483,648 (same as -231) to 2,147,483,647 (same as 231-1)
long – holds integers from -9,223,372,036,854,775,808 (same as -263) to
9,223,372,036,854,775,807 (same as 263-1)
float – holds numbers with decimal points up to
3.4028234663852885981170418348452 ∗ 1038 Note: ∗ means multiply
double – holds numbers with decimal points up to
1.797693134862315708145274237317 ∗ 10308 Note: ∗ means multiply
char – holds single characters. You must use single quotes (myChar='?';)
boolean – holds true or false

One Non-Primitive Variable Type:
String – holds text. You must use double quotes for the text (myString="Hi";). To add
to the end of a String (called concatenation), use the + sign: myString=myString+"5";
The String would now say "hi5" Note: the capitalization of the word String matters.
Again, the proper capitalization of variable types (and everything in Java) is vital.

To set a value to a variable, use the assignment operator, the equals sign
myInteger = 5;

This sets the value of myInteger to 5

You can both initialize and declare variables in the same statement like this
int myInteger=5;

Printing Output to Screen/Basic Math
To print out stuff for debugging, use:
System.out.println(valueToPrint);
In robocode, you must start a battle and click on the button on the right-hand side with
the name of your robot on it to view the output of this.

The value in System.out.println can be a complex expression like:
System.out.println(2*5+3);

Note on math: in Java, the basic math operators are + (addition), - (subtraction), *
(multiplication), / (division), and (and) (parentheses). Also, order of operations is
standard.
If the value is something that you do not want Java to try to evaluate, make it a String
by putting quotes around it:
System.out.println("This is just text");
You can print out Strings and values that must be evaluated at the same time by
concatenating them to a String:
System.out.println("The value of 2*5+3 is: " + 2*5+3);

This prints out: The value of 2*5+3 is: 13

If you don’t want a new line to be created after the value is printed, use
System.out.print(something); . In the opposite direction, you can manually make a
new line by putting \n into any String.

Tutorial Version 1.4 Page 8

Variable Scope
Curly braces, { and }, enclose all blocks of code in Java. Variables only exist within the
curly braces, they are declared in and are visible in all sub-curly braces. Where a variable
exists is called its scope. In Java, variables of more local scope override variables of
more global scope:
boolean testVal=false;
{
 boolean testVal=true;
 System.out.println(testVal);
}
System.out.println(testVal);

Output:
true
false

Tutorial Version 1.4 Page 9

Methods
Definition and Basic Syntax
Methods, called functions or subroutines in other languages, are reusable segments of
code. In Java and robocode, other people’s methods are vital (you use them for
everything as you will see). First, however, you will learn to make your own. Very basic
methods are declared like this:

void methodName() {
 thingsThatYouWantToDoRepeatedlyWithoutCopyingAndPastingCode;
}

These let’s say you wanted to print out a bunch of variables at different points in your
code and didn’t want to copy the System.out.println() a zillion times. These
variables would have to be declared in the same scope as method or more global,
otherwise the method could not see them. Later, you will learn how to pass variables
from any scope into a method. Example:

int a=1;
int b=2;
int c=3;
int d=4;

void printVars() {
 System.out.println(a);
 System.out.println(b);
 System.out.println(c);
 System.out.println(d);
}

//note: make a basic method execute (called calling a method),
//you simply type methodName();

printVars();
a=5+b;
b=3;
c=8-2;
d=55;
printVars();

This will print out the values of a, b, c, and d before and after they are modified. The
printVars() method saves you from having to type 4 System.out.println()’s each
time and also makes it so that you can edit the method and then not have to update
everything in your entire source code.

Method Arguments
To make methods more versatile, you can pass in parameters, or arguments. They allow
the methods to make use of the values of variables that are declared in a more local scope
than the method is. To make a method have arguments, declare what types you want
them to be and the names under which they can be accessed in the parentheses after the

Tutorial Version 1.4 Page 10

method’s name. Arguments are simply variables that are set when you call the method
(you shall see how). Note: arguments are local to their method; they cannot be accessed
outside it. Syntax for basic methods with arguments:

void methodName(argType argVarName, argType argVarName, . . .) {
 thingsThatYouWantToDoRepeatedlyWithoutCopyingAndPastingCode;
}

Example:
void printSum(double num1, double num2) {
 System.out.println(num1+num2);
}

Methods that use arguments are called like this:
methodName(valForArg1,valForArg2, . . .);

Example:
printSum(52,3);

This will print out 55.
When you call printSum(52,3); it sets the value of num1 equal to 52, and num2 equal to
3. Then, it adds num1 and num2, and prints them which yields 55
Note: the arguments you pass in must be in the same order and of the same type as the
ones in the method declaration. You couldn’t call printSum like this:
printSum("52",3); because Java doesn’t know how to add Strings, which are text, to
doubles, which are numbers. This would be like trying to add 3 to the word "blah".

You can, as you can everywhere in Java, use variables to represent the numbers you pass
in. If the type of the variable is the type that the method asked for or a subset of the type
the method asked for, the program works.
int x=1;
double y=8
printSum(x,y);

Since every double can hold integer values, this works. If you want to do the reverse (use
a double where an int is asked for), you must use type casting or conversion methods,
which are not explained in this section.

The return Statement
Finally, the true power of methods shall be revealed. Let’s say that you had some
complex piece of code that you didn’t want to retype a zillion times but that didn’t
actually print anything. For example, let’s say you had some groundbreakingly complex
encryption algorithm (note: an algorithm is a procedure for doing something. An example
of an algorithm you are probably familiar with is the Division Algorithm, which is
commonly known as long division), like adding 1 to the number inputted as an argument.
However, what if you didn’t want it to only be able to print the encrypted version of the
number, but rather wanted to make the method useful for a variety of applications. To do

Tutorial Version 1.4 Page 11

this, you can make methods return stuff to be used later in your program. The syntax for
methods that return stuff is:
returnType methodName(argType argVarName, argType argVarName, . . .) {
 thingsThatYouWantToDoRepeatedlyWithoutCopyingAndPastingCode;
 return returnValue;
}

Example:
double add(double num1, double num2) {

return num1 + num2;
}

The return statement must always return a value the type returnType, otherwise, the
program won’t compile. Also, don’t forget to put void as the return type of methods that
return nothing. Also note that return IMMEDIATELY ends the method, doing nothing
else after. If you want to end a method with return type void, simply say return; with
nothing between the word return and the semicolon.

When you call add(), you get the sum of 2 numbers inputted. However, unlike with
printSum(), it is up to you what you do with the output of the method.
Maybe you would do this:
double cookiesEatenToday=32.5;
double cookiesEatenYesterday=88;
double totalNumberEaten=add(cookiesEatenToday, cookiesEatenYesterday);

Method Overloading
You can define two methods with the same name as long as they have different
signatures. A method’s signature consists of its name and its arguments’ types and their
order. For example, the signature of the add method from above is:
add(double, double)
The signature consists of everything that can be used to tell what method is to be called
when you call a method. This leads to an interesting possibility: methods with the same
name but different signatures. The creating of such methods is called method
overloading. For example, you could overload the add(double, double) method and
create an add(double, double, double) method as well. To call this method, you
would simply say add(num1, num2, num3). In this way, you can make a more intuitive,
versatile method structure.

Tutorial Version 1.4 Page 12

Conventions
In Java, as there are in many languages, there are a few conventions. It is important to be
able to distinguish necessities of programming from these conventions.
Variable/method names – it is standard for each variable name to start with a
lowerCaseLetter and have each consecutive word capitalized. Note: variable TYPES
must be capitalized as shown (all the ones you’ve seen are all lower case except for
String). Also, note that when referring to variables, you must use the same
cApItAlIZaTiOn in their names as when you declared them.
Indentation – it is also standard to indent stuff inside a layer of curly braces with 5 spaces
(or for we lazy people, a tab). This is by no means necessary, but it is recommended.
Where to put curly braces – You can either put curly braces on the same line as the name
and arguments or below it (white space doesn’t matter at all).

Tutorial Version 1.4 Page 13

ANATOMY OF ROBOT SOURCE CODE
Below is a generic skeleton of a robocode robot. In real life, there might be prefabricated
comments in the code (you can leave those, they don't matter).

Package and Import
package yourInitials; //shows who the bot belongs to

import robocode.*; //makes special robocode methods available

Robot Name and Type
//following line makes a robot with the name BotName and type BotType.
//BotType can be Robot (which is easier but more basic; useful for
//beginners), AdvancedRobot (which is more powerful but harder to use),
//or TeamRobot (which is for making teams; it is also AdvancedRobot)

public class BotName extends BotType {

Global Variable Declarations

//here, you declare global variables, variables that are visible
//throughout the program

 variableType variableName;
 anotherVariableType anothervariableName;
 . . .

The Run Method

//the following method, the run() method, is called by robocode
//when the battle begins. This is where the program starts.

 public void run() {

Startup Code

//here, put stuff that you only want to do once at the
//beginning of the battle
//e.g. initialize variables
//Note: if you want to initialize global variables with
//stuff that requires method calls, you must declare the
//variables above but initialize them here. Above, nothing
//can actually be evaluated, it is outside the part of the
//program that runs

 somethingThatYouWantToDoOnlyAtBeginning;
 somethingElseThatYouWantToDoOnlyAtBeginning;
 . . .

Main Loop

//the following construct is called a while loop, it
//executes the stuff in its curly braces as long the
//statement in the parentheses is true. Since true is
//always true, this loops forever, or in this case,

Tutorial Version 1.4 Page 14

//through the duration of the battle. Put stuff you want to
//do throughout the duration of the battle here (like move)

 while (true) {
 somethingThatYouWantToDoThroughoutBattle;
 somethingElseThatYouWantToDoThroughoutBattle;
 . . .
 }
 }

Event Listeners

//below are the event listener methods. They are called whenever
//the event specified in their name occurs. In the robocode, all
/of them have a name beginning with "on" (like onHitWall or
//onScannedRobot). Note: in AdvancedRobots and TeamRobots, the
//events might fire a little bit late (you must correct for
//this). For example, if your turret is spinning (with your
//radar), and the enemy robot is scanned, and you say to fire,
//your turret may have passed the enemy slightly. You can correct
//for this by using the information in the argument; the event
//object. An event object is sort of a supervariable which
//contains variables and methods of its own (technically called a
//class). When the event is run, an Event is passed in (e.g. a
//ScannedRobotEvent). You specify the name you want it to have
//(as with all methods). Often, it is simply named e to save on
//typing (shown below). To get information from the event object,
//say in the event listener: EventTypeEvent.methodName(). To see
//what methods the event objects have, find the event listeners
//in Robot section of the API and click on the links to each
//listener’s event type

 public void onEventType(EventTypeEvent e) {
 somethingThatYouWantToDoOnThisEvent;
 somethingElseThatYouWantToDoOnThisEvent;
 . . .
 }

 public void onAnotherEventType(AnotherEventTypeEvent e) {
 somethingThatYouWantToDoOThisnEvent;
 somethingElseThatYouWantToDoOnThisEvent;
 . . .
 }
 . . .

 //here is a sample event listener:
 /*
 public void onScannedRobot(ScannedRobotEvent e) {
 //whenever we scan the enemy, turn the robot towards him

//note: getBearing() returns the number of degrees your
//robot must turn right to face the enemy see Headings
versus Bearings

 turnRight(e.getBearing());

 //then CHARGE!
 ahead(e.getDistance());

Tutorial Version 1.4 Page 15

}
*/

}

Tutorial Version 1.4 Page 16

MORE JAVA PROGRAMMING
To make good robots, there are some essential things about Java you must learn.

if Statements
Definition and Syntax
if statements are used to test if a condition is true and act accordingly
An if statement executes the stuff in the curly braces only if the statement in the
parenthesis is true.
This is the syntax for an if statement:
if(statementHereIsTrue) {
 doTrueThing;
}
If you have no curly braces, only stuff up to the first semicolon executes:
if(statementHereIsTrue)
 doTrueThing;
butNotThis;

To do something if the if statement is false, use the else statement:
if(statementHereIsTrue) {
 doTrueThing;
}
else {
 doFalseThing;
}

Nested if Statements
When you put an if statement into another if statement (or into the if’s else statement),
it is called nesting.

if(statementHereIsTrue) {
 doTrueThing;

if(statementHereIsTrue) {
 doAnotherTrueThing;
}

}
else {
 doFalseThing;
}

else if Statements
Here is a useful way of nesting (called else if statements):
if(statementHereIsTrue) {
 doTrueThing;
}
else if(statementHereIsTrue) {
 doOtherTrueThing;
}
else if(statementHereIsTrue) {
 doOtherTrueThing;
}
else {

Tutorial Version 1.4 Page 17

 doFalseThing;
}

Conditions and Boolean Operators
Statements to replace statementHereIsTrue are called conditional statements or
simply conditions. The operators used in conditional statements (called Boolean
operators) are: < (less than), > (greater than), == (equal to, for testing equality. There are
2 equals signs. MAKE SURE YOU USE TWO! Note: to compare Strings, you must
say: string1Name.equals(string2Name)), <= (less than or equal to), >= (greater than
or equal to), and != (not equal to). You can group them with parentheses.
Example 1:
int integer1=3;
int integer2=5;

//tests if integer1 is less than integer2
if(integer1 < integer2) {
 System.out.println("Hi");
}
This will print out Hi

Example 2:
String firstString="hello";
String secondString="hello";

//tests if firstString is the same as secondString
if(firstString.equals(secondString)) {
 System.out.println("Yay!");
}
This will print out Yay!

Since boolean variables are equal to true or false, to test them, you can just say

boolean testBool=true;

if(testBool)
{

System.out.println("Success");
}

This prints out Success since the statement within the parentheses is equal to true.

In some cases, instead of nesting or using multiple if statements, you can use Boolean
logic operators. The basic logic operators are parentheses, ! (this means NOT), && (this
means AND), and || (this mean OR, and you get these by pressing shift-backslash). The
order of operations for logic operators is: parentheses, &&, ||, and finally !.

Instead of saying:
if(integer1>0) {
 if(integer2>0) {

 System.out.println("Both integers are greater than 0");
}

Tutorial Version 1.4 Page 18

}

You can say:
if(integer1>0 && integer2>0) {
 System.out.println("Both integers are greater than 0");
}

You can group these logic operators using parentheses.
Example:
int integer1=3;
int integer2=4;
//tests if both are less than 5 and their sum is above 6
if((integer1<5 || integer2<5) && (integer1+integer2>6))
{
 System.out.println("Yay");
}

Output: true

The Ternary Operator
There is also a shorthand if statement that is highly useful. It is called the ternary
operator:
condition ? doThisIfTrue : doThisIfFalse;
Example:
int x=4;
System.out.println(x>0 ? "x is positive" : "x isn’t positive");

This will print out x is positive

Tutorial Version 1.4 Page 19

Using Built-In Methods
To see a list of useful methods, see the Useful Methods Quick Reference Sheet.

Calling static Methods
To call methods documented in the Java API, you have to say where you want to look for
them are. Otherwise the program can’t find them. Most of the methods you will be using
for now can be called like this:
Class.methodName(args)
Methods that can be called like this are called static methods. They take all of their
input through their arguments.
When looking at the Java API, there will be a list of classes (for now, you can think of
classes as ways of holding and arranging methods) on the left-hand frame. Click on them
and scroll down to see their methods. Look for the static keyword next to a method you
are trying to call this way (it is to on the left-hand side of the method summary).
One very useful class is the Math class, which contains methods for mathematical
operations. For example, if you wanted to take the sin of an angle, you would say:
double myAngle=0;
double angleSin=Math.sin(myAngle);

The output would be 0

Note: ALL JAVA TRIG FUNCTIONS USE RADIANS! To get π, type Math.PI

myAngle=Math.PI/2;
angleSin=Math.sin(myAngle);

The output would be 1

Calling non-static Methods
Non-static methods are methods that operate on whatever called them. These methods
do not have the static keyword in front of them. You call them with the following
syntax:
objectName.methodName(args);

To demonstrate, I will use the length() method that every String has (it returns the
String’s length):

String testString="testing";
System.out.println(testString.length());

Output: 7

Type Casting and Conversion Methods
Definition:
Type casting and conversion methods are ways of turning one type of variable another.
For example, what if you had a String that held "39" and you wanted to add 5 to it?
Since you can’t add Strings together (since they can hold non-numeric values), you

Tutorial Version 1.4 Page 20

must convert them a numeric type of variable first. To do this, you would use conversion
methods.

String to Number Conversions:
To go from a String to a primitive type of variable, use the static parse methods of
the primitive type wrapper classes (these contain methods pertaining to each primitive
type and are a capitalized version of the full name of the variable. e.g. the wrapper class
of double is Double, and the wrapper class of int is Integer). The general form for
parse methods is:
WrapperClassName.parseVarType(StringToConvert)
They return a VarType representation of the String.
Example 1:
String testNumString="39";
int testNum=Integer.parseInt(testNumString);
Now, testNum is equal to 39.

Example 2:
String testNumString="39.5";
double testNum=Double.parseDouble(testNumString);
Now, testNum is equal to 39.5.

String to char Conversions:
To get chars out of a String, use the non-static nameOfString.charAt(index)
method (index is the position of the char you want in the String, starting from 0).
Example:
int n=2;
String s="testing";
char myChar=s.charAt(n);
Now, myChar is equal to 's'

You can also convert a String to a char array using the the non-static
nameOfString.toCharArray() method (it returns a char array representing the
String).

Primitive Type to String Conversions:
To go from a primitive type to a String, the easiest way is to use the static
String.valueOf(valueToConvert) method of the class String.
Example:
String testNumString="39";
int testNum=Integer.parseInt(testNumString);
testNum=testNum+5;
testNumString=String.valueOf(testNum);
Now, testNumString is equal to "44".

Converting between Primitive Types:
If a certain type is a subtype of another (int is a subtype of double, every double can
hold int values), there is no need for conversion. You could legally say:
int someInteger=10;

Tutorial Version 1.4 Page 21

double someDouble=intVal;

To convert the other way, from a complicated type to a simple one, you must use Type
Casting. To type cast, use the following syntax:
(typeToConvertTo)thingToConvert

When casting from decimal-pointed number types to non-decimal-pointed number types,
the decimal portion is truncated, or cut off (they are NOT rounded). Also, you must be
sure that the numbers you are trying to send are within the range of the type you are
trying to send them to. For example if you have a long that you are trying to cast to an
int, the number contained by the long could be too large for the int to hold.

Example:
double someDouble=39.8;
int someInt=(int)someDouble;
Now, someInt contains the number 39

Note: since chars are stored as ASCII (American Standard Code for Information
Interchange) values, you can convert from int to char and back. A type cast from int to
char will return the character with the ASCII value of the int. The other way returns the
ASCII value of the char.

Tutorial Version 1.4 Page 22

Java math:
To add, use +
To multiply use *
To subtract, use -
To divide, use /
To group operations, use parentheses
Order of operations is just like in normal math (parentheses, * and /, + and -).
To raise to powers use Math.pow(base,exponent)

Note: when you divide an integer by another integer, it truncates the decimal portion.
5/2 is equal to 2
If you didn’t want stuff to truncate make at least one of numbers have a .0 after them
5.0/2 is equal to 2.5

Modular Arithmetic
In Java, the % sign means modulus. Modulus means the remainder when divided.
Ex. 11%5 is 1
This would be said in speech: “11 mod 5 is 1” or more formally: “11 is congruent to 1
when expressed in the modulo 5” There is something slightly different about modular
arithmetic in Java than you might expect. If you say 11.3 mod 5, you get 1.3. What Java
does is find out the greatest multiple of 5 that is less than 11.3 (10 it turns out to be) and
finds the difference of that and 11.3 (which would be 1.3). Note: the modulus operator
(%), has the same precedence (place in the order of operations) as * and /.

Shortcuts
There are a few ways to save on typing. You will encounter these in code a ton.
You can declare and initialize multiple variables of the same type in 1 line:
double x=1,y=9;
Integers default to 0.
Here are some other short cuts:
x+=y is equivalent to x=x+y
x-=y is equivalent to x=x-y
x*=y is equivalent to x=x*y
x/=y is equivalent to x=x/y
x%=y is equivalent to x=x%y
x++ is equivalent to x=x+1
x-- is equivalent to x=x-1

Tutorial Version 1.4 Page 23

Loops:
Loops are ways to repeatedly execute blocks of code. Like many other languages, Java
has 3 types of loops: while loops, do-while loops, and for loops. All loops run until
a given condition is false.

This is the syntax for a while loop, the simplest kind of loop:
while(thisExpressionIsTrue)
{
 somethingThatIWantToRepeat;
}

When you make a loop you must be careful that it does something that will make it stop.
Otherwise it will go on forever and ever and ever and ever and ever . A way to make an
infinite loop is by saying while(true). This is what you see in the run() method of a
robocode robot, where you want the robot to repeat its actions forever. Since the
expression in the parentheses is always true, the loop will run forever.
A variable that changes itself to stop a while loop is called a sentinel. Programmers call
the statements that update them update statments. They are often implemented as
below:

int i=0;
while(i<10)
{

System.out.println(i);
i++;

}

This loop will print the numbers 0 to 9. The variable i is used as the sentinel as well as
the thing to print out. Sentinels are often used this way. It is always wiser to inequality
checkers like <, >, <=, and >= than != in the condition. If the above loop used != instead
of <, if there was somehow a weird glitch and i got over 10, the program would end up
stuck in an infinite loop. This sometimes happens with floats and doubles because the
computer sometimes stores them as approximations (i.e. 1 might really be
1.00000000000000000000000000001 with doubles). Also, note that the loop actually
runs 10 times, not 9 times (count how many numbers there are 0 to 9). Often, people
make the mistake of using <= where a < should be used and vise versa. This results in an
off-by-one error. Be careful of these when programming.

do-while loops are VERY similar to while loops; the only difference is that do-while
loops run one iteration (an iteration is one cycle of a loop) before checking the condition.
Their syntax is:

do
{
 somthingThatIWantToRepeatButDoOnceBeforeChecking;
}
while(thisExpressionIsTrue);

Note that there is a semicolon in the while(thisExpressionIsTrue); part.

Tutorial Version 1.4 Page 24

for loops are a quick, easy way to make a loop with a sentinel. They are declared like
so:

for(sentinel=initialValue;conditionToTest;updateStatment)
{
 somethingThatIWantToRepeat;
}

Example:

int theSentinel;
int topNum=10;
for(theSentinel=0; theSentinel<=topNum; theSentinel++)
{
 System.out.println(theSentinel);
}

This loop will print out the integers from 0 to 10. Note that because there is a <= in the
condition, it really runs 11 times (count to 10 starting from 0 and you will see).
Note about for loops: you can declare the sentinel variable in the
sentinel=initialValue part if you have no need of them outside the loop. You would
say:
for(int theSentinel=0; theSentinel<=topNum; theSentinel++)
Another note about for loops: you can have multiple sentinels, conditions, and update
statements. You just have to separate them with commas.
Ex. for(int i=0, int j=2; i<=100, j>5*i; i++,j++)

Note about loops: there is one other type of loop with the syntax
for(Object someName:anotherName)
{

stuff;
}
but you will probably not see it and it is used only for some advanced Java stuff.

Tutorial Version 1.4 Page 25

Arrays:
Arrays are simply a way of quickly and easily making and accessing a bunch of
variables of the same type. In Java, array variables (variables that can hold arrays) are
declared like this:
dataTypeYouWantArrayToHold[] arrayName;
An example of an array declaration is:
double[] numbersToFindAverageOf;

Now, this array doesn’t hold anything yet (in fact it can’t yet as you shall soon see). All
that we said with the above line of code was that we want to make something named
numbersToFindAverageOf that can hold an array of doubles. Arrays in Java are non-
dynamic, you can’t change their size once they are created. To make dynamic arrays,
arrays that can change their size, you must use Vectors or ArrayLists, which are fairly
complicated. To make our array variable actually hold a new array, we have to add a
statement like this:
arrayName=new dataTypeYouWantArrayToHold[arrayLengthYouWant];

An example for the numbersToFindAverageOf array is:

//note: don’t make your variable names this
//long or your fingers will soon be sore
int numberOfNumbersToAvg=11;
double[] numbersToFindAverageOf;
numbersToFindAverageOf=new double[numberOfNumbersToAvg];
Just as you can declare and initialize variables in the same statement, you can both
declare and create new arrays in the same statement. You just have to put the new
statement on the same line as the declaration. In the above example, you would do this:

int numberOfNumbersToAvg=11;
double[] numbersToFindAverageOf=new double[numberOfNumbersToAvg];

Or more compactly:
double[] numbersToFindAverageOf=new double[11];

To access elements in arrays, use the following syntax:
//note: index means which element number that you want
//It starts from zero; first element is 0, second is 1, and so on
arrayName[index]

Accessing an element in an array simply gives you the indexth variable stored in the
array (starting from zero). An array’s maximum element number is one less than its
length (if you declare int[] myArray=new int[2], the 2 legal indices (plural of index)
will be 0 and 1). You can set or modify array elements accessed this way just as if they
were normal variables.
This example demonstrates the power of arrays and for loops combined:

//makes a new array
double[] someArray=new double[3];

Tutorial Version 1.4 Page 26

//sets the values of the elements
someArray[0]=3.14159;
someArray[1]=2;
someArray[2]=-4;

//the length variable of an array holds the number of
//elements in the array. In this case, it is 3.
//To access it, say arrayName.length
for(int i=0;i<someArray.length;i++) {
 //this prints out the element corresponding to index i
 //since i starts at 0, increases by one each

//time the loop runs, and the greatest value that it
//reaches is the array’s length-1 (the condition uses <),
//this loop gets the entire array printed
//out without going out of bounds
System.out.println(someArray[i]);

}

The output of this code is:
3.14159
2.0
-4.0
Note: since we are using doubles, Java puts a .0 after numbers that don’t have decimals
(same for floats).

If arrays are confusing, you can think of expressions of the form arrayName[index] as
an easier, more powerful, way to do something like this:
int num0=0;
int num1=1;
int num2=2;
System.out.println(num0*2+1);
System.out.println(num1*2+1);
System.out.println(num2*2+1);

The declarations and assignations can be replaced with:
int[] numbers=new int[3];
numbers[0]=0;
numbers[1]=1;
numbers[2]=2;

Or more compactly (shorthand way to do the same thing):
int[] numbers={0,1,2};

To access the first number, you would say numbers[0] instead of saying num0
For example, you would replace num0=0; with numbers[0]=0;

The following line of code:
System.out.println(num0);

Is equivalent to this:
System.out.println(numbers[0]);

Tutorial Version 1.4 Page 27

You could replace the repetitive set of System.out.println statements with a for loop
like this:
for(int i=0;i<numbers.length;i++) {

System.out.println(numbers[i]*2+1);
}

The output is:
0
1
2

Tutorial Version 1.4 Page 28

Break and Continue statements:
Sometimes you want to escape from loops before they are done or skip all or part of an
iteration of a loop. To do this, use the break or continue statements. break ends the
loop entirely and continue skips after the continue statement and goes to the next
iteration. They work in any type of loop (a while loop is shown below, though you could
do this in a for loop or a do-while loop as well).

while(conditionIsTrue)
{
 //you don’t usually use both break and continue in the same loop

//and you certainly don’t have to
//this is just for demonstration purposes

//in the following code, if something were true, the
//break statement would be invoked and it would
//IMMEDIATELY end this while loop and continue with the program
//as if the loop’s condition had been false.
//normallyDoThis (which occurs in the loop AFTER the break
//statement) would not be executed

 if(something)
 break;

//in the following code, if somethinElse were true, the
//continue statement would be invoked and it would
//IMMEDIATELY end the current ITERATION of the loop, however,
//if the loop’s condition remained true, the loop would continue
//beginning with the next iteration. normallyDoThis would not be
//executed on the current iteration, but it would be executed
//in later iterations, if somethingElse were false

 if(somethingElse)
 continue;

 normallyDoThis;
}

break’s usefulness is demonstrated below:

//the following code checks to see if the
//array is sorted least to greatest

//creates and initializes arrayToCheck
int[] arrayToCheck={2,4,5,22,56,42,82,99,101};

//the following says if the array is sorted or not. It is initialized
//to true and will remain that way unless it is shown to be unsorted
boolean sorted=true;

//the following scans through the array. Note: the -1 is there so i+1
//is always a legal index (for example, if the array’s length were 3,
//the greatest index would be 2. If the -1 were not there, i would only
//get to 2, but i+1 would get to 3, which is illegal)

Tutorial Version 1.4 Page 29

for(int i=0;i<arrayToCheck.length-1;i++) {
 if(arrayToCheck[i] > arrayToCheck[i+1]) {
 sorted=false;

//if one element is unsorted, that means the array isn’t
//completely sorted, and we have no need to waste our time
//checking any more elements, so we can break

 break;
}

}

System.out.println(sorted);

Output:
false

Tutorial Version 1.4 Page 30

Appendix A: Headings Versus Bearings:
When robocoding, you will come upon getHeading() and getBearing() methods. The
heading of something is the ABSOLUTE direction that it is facing, counted clockwise
from vertical. You can use the getHeading() method on your robot, your gun, your
radar, and enemy robots.

In robocode, bearings are how far your need to turn YOUR ROBOT RIGHT, to FACE
something. This will be a number from -180 to 180. If you call a turn right method with a
negative value, it will turn you left. When you call an object’s getBearing() it will
simply return the number of degrees that will most efficiently turn your robot to face it.
This angle is your bearing relative to the object, or the object’s relative bearing.

If your code said:

public void onHitWall(HitWallEvent wall) {
 System.out.println(wall.getBearing());
}

It would print out a number around 30 in the above situation.

Note: there are getHeadingRadians() and getBearingRadians() methods as well to
make life easier for people dealing with radians.

Absolute Bearings:
Though these aren’t built into robocode, absolute bearings are used so often that they are
worth mentioning here. The absolute bearing of something is the actual direction that you
would have to be facing to point towards something. It is equal to the sum of your
heading and an object’s relative bearing (the thingy returned by the getBearing()
method).

Heading (Approx 150° here)

Robot is facing this way

Your heading (Approx 150° here)

Robot is facing this way

Wall’s bearing (Approx 30° here)

Wall

Tutorial Version 1.4 Page 31

Absolute bearings, with some simple trigonometry, can be used to derive incredibly
useful methods. Below is a walkthrough of making a method that turns you towards a
given point.

How to Turn (a part of the robot) Towards a Target Point:
Note: You should be familiar with the trigonometry in the Trigonometry Tutorial before
reading this.

Writing the Absolute Bearing Method
We are trying to find how far we must turn right to face the target point (its relative
bearing). We know our x and y coordinates (courtesy of the getX() and getY()
methods), our heading (courtesy of the getHeadingRadians() method), and the
coordinates of the target point (any point you
choose).

Now, since we know the 2 legs of the right triangle, we can determine the tangent of a.
Tangent is equal to opposite over adjacent, so the tangent of a is equal to m/n. Since we
know the tangent of the angle, we can find the actual angle with the arctangent function
and some algebra:
tan(a) = m/n
atan(tan(a)) = atan(m/n)
a = atan(m/n)
We now know the angle a.

Your heading (Approx 210° here)

Your robot is facing this way

Relative bearing of enemy
(Approx 90° here)

Absolute bearing of enemy
(Approx 300° here)

Enemy Robot

Your robot is facing this way

Relative bearing of target point
(Our ultimate goal is to find this)

Absolute bearing of point; let’s call this a
(We can find this with some trig)

Target point (pointX, pointY)

Let’s call this leg’s length m.
m = pointX-getX()

Let’s call this leg’s length n.
n = pointY-getY()

Our location (getX(), getY())

Tutorial Version 1.4 Page 32

Since we know a, and we know our own heading, it is trivial to find the relative bearing
of the target point. The relative bearing is equal to a-getHeadingRadians(). This is
obvious if you look at the part of the absolute bearing that is NOT covered by your
robot’s heading.

All this can easily be transformed into 1 line of code by replacing a with what it
represents, atan(m/n). We can further simplify this by replacing m and n with what they
represent: m=pointX-getX() and n=pointY-getY(). Our code turns out as follows:

//returns the absolute bearing of
//the point (pointX,pointY)
//note: this will not always work (explained below)
double absBearing(double pointX,double pointY)
{
 return Math.atan((pointX-getX())/(pointY-getY()));
}

In your code, if you wanted to make your radar or something face some point, you could
use the logic above:
double x=50;
double y=100;

//see note
turnRadarRightRadians(robocode.util.Utils.normalRelativeAngle(
absBearing(x,y)-getRadarHeadingRadians());

Note: the robocode.util.Utils.normalRelativeAngle method ensures that you are
most efficiently turning to face the point (turning the short way around). See Normalizing
Angles in the Useful Methods Quick Reference Sheet for an explanation.

Before you get too excited, you should test this method. You may be surprised to see that
it does not work when your robot is in certain quadrants of the board (relative to the
target point). We did nothing to correct for the sign problem! (See trigonometry tutorial.)
If your robot is above the target point, it will move in the direction EXACTLY
OPPOSITE the one you want! It is demonstrated how this happens below.

Your robot’s heading; getHeadingRadians()

Relative bearing of target point

Absolute bearing of target point; a

Target point

Tutorial Version 1.4 Page 33

In the above example, the m/n is -1 since m=-n.When we plug this into Math.atan, we
get an angle whose tangent is -1 (namely -π/2 radians, or -45°). We get this instead of
3π/4 radians (225°), which we want because of the convention with inverse trig functions
that returns the angle closer to 0°.

There is an easy way to correct for this problem. Since the error only occurs in the when
the point is below your bot, or its y coordinate is negative relative to you, we have an
easy way to figure out if the problem will occur. (The arctangent function will always
return a value in the first or fourth quadrant, and in robocode, the quadrants are calculated
clockwise from vertical, so the first and fourth quadrants are the top 2.) Since the angle
returned when the point is below our bot is always exactly opposite the angle that we
want we can correct for it by adding π (180°) to the result of the arcsine function. (This is
because tan = sin/cos, and the angle opposite of another has the same sin and cos, except
for the sign. The sign is going to be the opposite for both sin and cos. Therefore, the
tangents of an angle and the angle opposite it are the same.)
Our code would be as follows:

//absBearing - returns the absolute bearing of the point
//at the location (pointX,pointY)
//note: THIS WILL ALWAYS WORK
double absBearing(double pointX,double pointY)
{
 //if the point is below us, add pi to the angle
 if(pointY-getY()<0)

Your robot is facing this way

Relative bearing of target point
(Our ultimate goal is to find this)

Absolute bearing of point; let’s call this a. It is approx 3π/4 radians (225°) here

Target point (pointX, pointY)

Let’s call this leg’s length m.
m = pointX-getX()
m will still be positive in this case
Also m = -n because this is a
45-45-90 triangle

Let’s call this leg’s length n.
n = pointY-getY()
n will be negative in this case
Also, n = -m because this is a
45-45-90 triangle

Our location (getX(), getY())

Your robot is facing this way
Real absolute bearing of point (3π/4). tan 3π/4 = -1

Target point (pointX, pointY)

Angle that is actually returned (-π/4).
This is because tan π/4 = -1 as well

This length is equal to m.

This length is equal to -n.
(This is because it is below
our bot. Imagine the bot were
the center of a unit circle).

This length is equal to -m.
This length is equal to n.

Tutorial Version 1.4 Page 34

 return Math.PI+Math.atan((pointX-getX())/(pointY-getY()));
 //otherwise, just return the angle
 else
 return Math.atan((pointX-getX())/(pointY-getY()));

//note: we could simplify this code into one line with the
//ternary operator (the shorthand if statement) as follows
/*
return ((pointY-getY)<0 ? Math.PI : 0) +
Math.atan((pointX-getX())/(pointY-getY()));
*/
//This says says to add 0 if the point is above you and
//to add pi if it is below you

}

To turn our radar to face a point, we would say the same thing as above. To make it face
the point (x,y) we could now safely say:
double x=someValue;
double y=someValue;
turnRadarRightRadians(robocode.util.Utils.normalRelativeAngle(
absBearing(x,y)-getRadarHeadingRadians());

The atan2 Method
This should work fine. However, we reinvented the wheel by writing it. absBearing is
virtually identical to the method Math.atan2(yCoord,xCoord), which returns the θ
portion of the polar representation of the Cartesian point (yCoord,xCoord). However the
following code will NOT work (even though atan2 corrects for the sign problem):

//THIS WILL NOT ALWAYS WORK:
double pointX=someValue;
double pointY=someValue;

//note: in the below line of code, the getY() and the getX()
//are just to make it as if your robot were at the origin so
//that the polar coordinates work correctly (remember, polar
//coordinates are measured from the origin)

turnRadarRightRadians(robocode.util.Utils.normalRelativeAngle(
Math.atan2(pointY-getY(),pointX-getX())-getRadarHeadingRadians());

The Math.atan2 method returns the polar representation of a point (standard trig), not
the robocode representation. However, we can fool it into giving us what we want. In the
below diagram, since tangent is equal to opposite over adjacent, the tangent of a is equal
to m/n, which is the relative x coordinate over the relative y coordinate. However, the
atan2 method assumes that tangent of the desired angle is going to be equal to y/x
(where y and x are given as arguments) because that is what the tangent of an angle in
standard trig. This is not standard trig. Here, the tangent of angle a is the target point’s x
coordinate relative to your bot over its y coordinate relative to your bot (m/n). Therefore,
if we called the atan2 method with reversed arguments, it would give us the proper
robocode angle.

Tutorial Version 1.4 Page 35

This code demonstrates the proper use of atan2 in robocode:
//THIS WILL ALWAYS WORK:
double pointX=someValue;
double pointY=someValue;
//the getY() and the getX() are just to make it as if your
//bot were at the origin so that the polar coordinates
//work correctly
//here, we input the x coordinate where y is expected and
//the y coordinate where x is expected to "trick" the
//function into giving us the robocode angle
turnRadarRightRadians(robocode.util.Utils.normalRelativeAngle(
Math.atan2(pointX-getX(),pointY-getY())-getRadarHeadingRadians());

Absolute bearing of point; let’s call this a

Target point (pointX, pointY)

Let’s call this leg’s length m.
m = pointX-getX()

Let’s call this leg’s length n.
n = pointY-getY()

Our location (getX(), getY())

Tutorial Version 1.4 Page 36

Appendix B: Trigonometry Tutorial:
Here is some basic yet important trigonometry. Trigonometry is a BIG word for
something very simple. It all starts with the unit circle. A unit circle is a circle with the
radius of 1 unit.

Above is a circle with its center at the origin, the center of the coordinate plane. It
contains the points (1,0), (-1,0), (0,1), (0,-1).

This circle is highly useful. Let’s say that you were given the hypotenuse and an angle of
a right triangle. Since 2 angles are given (the right angle is 90 degrees by def of right
triangles), and the side is given you are given an Angle, an Angle, and a Side.
This is enough to determine a right triangle (AAS Thm, since sum of degrees in
triangle=180, if you know 2 angles, you know the third, and then you can just use ASA).
This means that if you know an angle and the hypotenuse of a right triangle, you know
the sides. Since all triangles with the same angles have no differences except for their size
(they are just bigger versions of the small triangles), the ratios of their sides are constant.
These ratios are known as the Trigonometric Ratios!!!

Trigonometric Ratios:
Let’s drop an altitude from the end of the radius to the x axis in our unit circle. We now
have a right triangle. The unit circle is good for representing trigonometric ratios because
it makes the hypotenuse of the right triangle 1 (you will see how this helps in a second).
The ratios are illustrated below (distances are represented by lower case letters):

1

(0,0)

(0,1)

(-1,0)

(0,-1)

(1,0)

1

B

a
c

b
A C

Sine (abbreviated sin) = opposite/hypotenuse. sin A=a/c
Cosine (cos): adjacent/hypotenuse. cos A=b/c
Tangent (tan): opposite/adjacent. tan A=a/b

Sin B=b/c
Cos B=a/c
Tan B=b/a

Note: I will denote the measure of angle just by its letter for
convenience.

Tutorial Version 1.4 Page 37

There are other trigonometric ratios defined, but these 3 are the standard ones. Anyway,
the others all are easily derivable from the above 3.

The reason a unit circle is useful is because in a unit circle, c=1.
If c=1, then the sines and cosines of angles are simply equal to the lengths the legs of the
right triangle! This makes it easier to imagine the ratios.

In a unit circle, we call the given angle the Greek letter theta. Theta is written like this: θ.

In a unit circle, because the hypotenuse is equal to one unit, the y coordinate of the end of
the radius is equal to the sine of θ and the x coordinate equal to the cosine. The tangent is
equal to the y coordinate over the x coordinate. Though there can’t be negative distances,
the sines and cosines of angles can be negative if the y or x coordinate of the end of the
radius is negative (sin if y, cos if x). The tangent is negative if x or y (not both) are
negative. (This is because the tangent is equal to the sine over the cosine. If sin is the y
coordinate, and cos is the x, and tan is y/x, then tan is sin/cos) Even though they don’t
make sense with distances, negative trigonometric ratios actually are logical. You will see
as you use them.

Inverses of trigonometric functions:
The inverse of a trigonometric function is called the arcfunctionName. The opposite of
sine is arcsine (asin), cosine is arccosine (acos), and tangent is arctangent (atan). The
arcsine of the sine of an angle is equal to the angle, the arccosine of the cosine of an angle
is the angle, and so on. Note: the inverse of a function is denoted by a superscript -1 after
the functions name. The inverse of f(x) would be f-1(x).

The Sign Problem:
When you do the inverse function of a normal trigonometric function of an angle, you
might not get the result you expect. The coordinate plane is divided into 4 quadrants
based on the signs of the x and y coordinates. They are counted, like θ, counterclockwise
from the x axis.

This is θ. It is counted
counterclockwise from the positive
x axis. A negative θ goes clockwise.
Note: In robocode, angles measures
are counted clockwise from vertical

II I

III IV

Tutorial Version 1.4 Page 38

In quadrant I, the sin, cos, and tan are all positive, but this is not so in the other quadrants:
Quad I: sin = +,cos = +, tan = +
Quad II: sin = +, cos=-, tan = -
Quad III: sin = -, cos=-, tan = +
Quad IV: sin = -, cos = +, tan = -

Let’s take the tangent of 45°. Since a 45-45-90 right triangle’s two legs are the same,
tan 45°=1. However, tan 225° is also 1.

Because of this, a computer or calculator cannot know which angle to return. To make it
possible to evaluate inverse trig functions with a computer, people came up with a
convention. Computers and calculators always return the angle closer to 0°. If you use
your calculator or computer to evaluate atan(1), you will get 45, not 225. If you asked for
atan(-1), you would get -45, not -225 (-45° is equiv to 315° and -225° is equiv to 135°)

Note about trig functions: Only a few obvious ones are doable by hand, most require
calculus to derive and their values are irrational. That is why we use computers and
calculators to figure them out.

Radians:
Degrees are arbitrary. It makes no sense to divide a circle into 360 segments. The 360 is
just what somebody decided a long time ago.
There is a better system, radians. Radians are based on the radius of the circle. The
circumference of a circle is equals π times the diameter (πD) or 2π times the radius (2πr).
Since C=2πr, C/r=2π (C is circumference)
Therefore, the radius of a circle goes into its circumference 2π times, NO MATTER
WHAT. The number of radii (plural of radius) that go into a circle is constant.
Because of this, we can make a new, more logical way of measuring angles. Imagine you
start at the point (1,0) and travel counterclockwise around the circumference of the circle.
Suppose you measure the distance you’ve traveled in units equal to the length of the
radius of the circle.

225°

45°

tan 45° = 1/1 = 1

tan 225° =
-1/-1 = 1

This arc, to the tip of the
arrow, is 1 radius long. The
measure of the angle θ that
includes the arc is defined to
have the measure 1 radian.

θ

Tutorial Version 1.4 Page 39

Radian to Degree Conversions:
Since the radius goes into any circle 2π times, there are always 2π radians in a circle. In
the degree system, there are 360 degrees in a circle. Therefore 2π radians is equivalent to
360 degrees.
We can derive the following identity from this:
r = number radians
d = number degrees
r/2π=d/360
This simplifies to r/π=d/180
From this we can convert radians to degrees.
In English, the identity r/2π=d/360 becomes obvious. You are just saying “What fraction
of the whole circle equals what fraction of the whole circle?” The only difference is the
unit.

Following are some useful angle measures in both radians and degrees:

Radians are VERY important for programming because in Java, the trigonometric
functions return in radians. If you printed out atan(1), you would not get 45 degrees but
rather 0.7853981635, or π/4. I make mistakes by mixing up my radian and degree
measures all the time.

Polar coordinates
Just as you can express points on a coordinate plane with normal coordinates (called
Cartesian or rectangular coordinates), you can express points using circular coordinates (I
am not sure if people actually call them this), or polar coordinates. Polar coordinates
contain 2 values: r and θ. They are written (r, θ). r is the radius of an imaginary circle
whose center is at the origin and that includes your point, and θ is the angle that the point
represents when it is expressed on the circle.

0° or 0π rad; equiv to 360° or 2π rad

90° or π /2 rad

180° or π rad

270° or 3π /2 rad

45° or π /4 rad
30° or π /6 rad

225° or 5π /4 rad

135° or 3π /4 rad

315° or 7π /4 rad

120° or 2π /3 rad

150° or 5π /6 rad

330° or 11π /6
rad

300° or 5π /3
rad

210° or 7π /6 rad

60° or π /3 rad

240° or 4π /3 rad

r
: θ

Polar:
(r,θ) Cartesian: (r sin θ), r cos
θ)

r sin
θ

r cos
θ

Here is a point expressed in 2 different ways. In
polar coordinates, it is expressed with r, the length
of the radius of the imaginary circle, and θ, the
number of degrees around the imaginary circle. To
convert these to Cartesian coordinates, you multiply
r by the sine and cosine of θ (remember that the x
coordinate on a unit circle is the cosine and the y
coordinate is the sine)

Tutorial Version 1.4 Page 40

The only reason that polar coordinates are worth mentioning is that Java provides a
VERY easy way to go from Cartesian to polar coordinates, the atan2 method. This
method is explained above.

Solving oblique (non-right) triangles
Solving a triangle is defined as finding all angles and sides from given measures. This is
easy if you have a right triangle, you can simply use the trigonometric functions and/or
the Pythagorean theorem (in right triangle ABC (above), a2 + b2 = c2)

However, what do you do if you are given a non-right, or oblique triangle?

The law of sines:
For any triangle ABC (lowercase letters correspond to lengths of sides opposite angles):
a/(sin A)=b/(sin B)=c(sin C)
Use this if you are given angle, angle, and side (AAS) or ASA. Also, you can use the law
of sines find some attributes of the triangle if you are given SSA.
Remember that if you know 2 angles, you know all 3.
Go to http://en.wikipedia.org/wiki/Law_of_sines for a proof

The law of cosines:
For any triangle ABC (lowercase letters correspond to lengths of sides opposite angles):
a2=b2 + c2 – 2bc∗cos(A)
b2=a2 + c2 – 2ac∗cos(B)
c2=a2 + b2 – 2ab∗cos(C)
Use this if you are given SAS or SSS.
FYI: ∗ (or *) means multiply on computers.
Go to http://en.wikipedia.org/wiki/Law_of_cosines for a proof

Although angles A, B, and C are not parts of a right triangle, they still have sines,
cosines, and tangents (this is obvious but when I learned this, I didn’t get it at first). The
trigonometric functions are defined for an angle no matter what triangle it is in because,
to represent the functions, you just have to make a unit right triangle (one with
hypotenuse length of 1) with given angles. It doesn’t matter where the angle is, its trig
functions are always the same

1

2

1

2
Sqrt(3)

Pythag. Thm

atan(2/1)

atan(1/2)

90

Sin A = d/b

C

b

A B c

a
d

Tutorial Version 1.4 Page 41

Appendix C: A Sample Robot
This is a robot called AheadBot. It bounces off walls, moves with its gun perpendicular to
its body, spins its gun at the end of each motion (each time it hits wall), and fires at
whatever is in front of it. Copy this into your folder in the robots directory, change the
package to yours, and compile this robot. Try fighting it against Corners (in the sample
package).

package jc;
//your package should be your initials
//this corresponds to the folder is where your robots are stored

import robocode.*;

/**
 * AheadBot – a robot to demonstrate robocode
 */
public class AheadBot extends Robot
{
 //1 for forward, -1 for backwards
 int direction=1;

 /**
 * run: AheadBot's default behavior
 */

 //this is where the program starts
 public void run() {
 //note: code here only runs once

 //makes gun face sideways
 turnGunRight(90);

 //the following variable holds a distance as long as the
 //robot will ever have to travel. This is the diagonal from
 //one corner to another
 //this works because of the Pythagorean Theorem
 //(a^2 + b^2 = c^2 -> sqrt(a^2 + b^2) = c)
 //n^2 means n squared in computer notation
 //therefore, the distance from corner to corner of
 //the battlefield is sqrt(fieldwidth^2 + fieldheight^2)
 //in code, it comes out as below

 double maxBattleFieldDimension =
 Math.sqrt(getBattleFieldWidth() * getBattleFieldWidth() +
 getBattleFieldHeight() * getBattleFieldHeight());

 //note: gun turns with robot
 //radar turns with gun (to see radar, go to Options >
 //Preferences, then click visible scan arcs)
 //the setAdjustGunForRobotTurn(),
 //setAdjustRadarForRobotTurn(), and
 //setAdjustRadarForGunTurn() make the robot part mentioned
 //in the method name independent of the other robot part
 //mentioned in the method name

Tutorial Version 1.4 Page 42

 while(true) {
 //note: code in here repeats throughout the battle

 //this moves you ahead maxBattleFieldDimension units
 //if direction is 1, otherwise, it moves you
 //ahead -maxBattleFieldDimension units (backwards)
 //the reason we move maxBattleFieldDimension pixels
 //is so that the robot doesn't pause after it has
 //finished its move
 //This way, it will always hit a wall before its
 //motion is done

 ahead(maxBattleFieldDimension*direction);

 //spins the gun around after it reaches the
 //end of its motion
 turnGunRight(360);
 }
 }

 /**
 * onScannedRobot: What to do when you see another robot
 */
 public void onScannedRobot(ScannedRobotEvent e) {
 //fires a bullet of power 1
 fire(1);

 //note: since the radar moves with the gun, whenever we
 //scan an enemy, our gun is facing him
 }

 /**
 * onHitByBullet: What to do when you're hit by a bullet
 */
 public void onHitByBullet(HitByBulletEvent e) {
 //this moves you perpendicular to the bullet
 turnRight(e.getBearing() + 90);

 //e.getBearing() here returns the number of degrees you
 //must turn right to face the bullet, so turning 90 past
 //that turns you perpendicular to it
 }

 public void onHitWall(HitWallEvent e) {

 //toggles the movement direction when you hit a wall
 if(direction==1)
 direction=-1;
 else
 direction=1;

 //note: this could be shortened with the ternary operator.
 //all of this could be replaced with:
 //direction = direction==1 ? -1 : 1;
 }

}

Tutorial Version 1.4 Page 43

Appendix D: Historical Robots

SandboxDT by Paul Evans
This is probably the most famous robot ever in the history of robocode. Was deemed
“unbeatable” for a long time.
Wiki Page:
http://robowiki.net/cgi-bin/robowiki?SandboxDT
Download the latest version (version 3.02 as of 12/23/06; non-melee. Is this a bug?) by
clicking on the Download from Repository link on the wiki page.
Download the melee version (latest is 2.71m as of 12/23/06) at:
http://www.robocoderepository.com/BotDetail.jsp?id=2008

Dookius by Voidious
1v1 only champion and highest ranked bot as of 12/23/06
Wiki Page:
http://robowiki.net/cgi-bin/robowiki?action=browse&id=Dookious&oldid=Dookius
Download by clicking on the link underneath “Great, I want to try it. Where can I
download it?”

Aleph by rozu
Melee 2nd place as of 12/23/06 (longtime champion however)
Wiki Page:
http://robowiki.net/cgi-bin/robowiki?Aleph
Download by clicking on the link underneath “Great, I want to try it. Where can I
download it?”

Shadow by ABC
The best overall robot, melee and 1v1 combined (as of 12/23/06). Also, melee champion
as of 12/23/06.
Wiki Page:
http://robowiki.net/cgi-bin/robowiki?Shadow
Download the best version of Shadow (as of 12/23/06) at:
http://robocode.aclsi.pt/abc.tron3.Shadow_3.66b.jar

FloodMini by Kawigi
Very famous MiniBot (bot with codesize rated < 1500, see http://robowiki.net/cgi-
bin/robowiki?WeightClass for the “weight” classes)
Wiki Page:
http://robowiki.net/cgi-bin/robowiki?FloodMini
Download by clicking on the link underneath “Great, I want to try it. Where can I
download it?” (scroll down)

Tutorial Version 1.4 Page 44

Appendix E: Robocode Physics and Mechanics

Note: + means add, - means subtract, * means multiply, / means divide

Robocode Time/Space:
Time in robocode is divided into discreet “ticks” and space is divided into units which are
sized approximately 1 pixel, depending on how much they are scaled (units scaled to fit
on screen). Angles in robocode are calculated clockwise from vertical. After you have
been inactive for “Inactivity Time” number of ticks (specified in the rules tab when you
start a battle, default is 450 ticks) robots begin to lose health if they are “inactive”.
Inactivity in robocode is defined by not losing energy (you lose energy when you fire or
collide with enemy robots, and AdvancedRobots lose energy when they hit a wall).

Robot Structure:
Robots consist of 3 parts, a body, a gun turret, and radar device. The turret is mounted on
the body and the radar is mounted on the gun (each spins with the parts below it). Your
radar can only see enemy robots (not flying bullets). Also, you cannot get the direction
the enemy’s radar or gun is facing, just the way its body is. You can also get an enemy’s
velocity and energy.
Robots are treated as non-rotating squares.
Robot Size: 36 x 36 units2

Movement Physics:
Max Acceleration: 1 unit per tick per tick
Max Deceleration: 2 units per tick per tick
Max Velocity (negative means moving backwards): 8 and -8
Max Body Rotation: (10 - 0.75 * Math.abs(velocity)) degrees per tick
Max Turret Rotation: 20 degrees per tick (plus effect of body rotation)
Max Radar Rotation: 45 degrees per tick (plus effect of body/turret rotation)

Note: robots start at random locations on the battlefield, facing random directions at the
beginning of each round

Energy (Bullets and Health):
In robocode, energy serves both as ammunition and health. When you fire a bullet (legal
power is 0.1 to 3), your robot loses energy depending on the bullet’s strength (higher is
more loss). When a bullet hits, the enemy loses energy bullet and you gain energy, based
on the strength of the bullet. Also, every time you fire, your gun becomes hot based on
the strength of the bullet. You can specify the gun cooling rate under rules when you start
the battle.
Legal bullet powers: 0.1 to 3
Bullet Speed: 20-3*power
Bullet Damage: 4*power. If power > 1, it does an additional 2*(power-1)
Energy lost when fired: same as power
Energy gained on hit: 3*power

Tutorial Version 1.4 Page 45

Gun Heat Generated: 1 + power/5. You cannot fire if gunHeat > 0. Guns start with heat
3.0 at the beginning of each round.
Gun Cooling Rate: Specified by user under rules at the beginning of each battle. Default
is .1 heat units per tick.

Collisions:
Robot-Robot: .6 damage. If a robot is moving away from the collision, it will not be
stopped.

Robot-Wall (AdvancedRobots only): Math.abs(velocity)*0.5 - 1 If this value is less
than 0, it is set to 0 (so no negative damage)

Robot-Bullet: Self-explanatory. Damage calculated by formula under Energy (see above)

Bullet-Bullet Collisions: These are very complicated. See http://robowiki.net/cgi-
bin/robowiki?BulletShielding (scroll down)

Tutorial Version 1.4 Page 46

Quick list of Robocode/Java stuff:
http://robowiki.net/cgi-bin/robowiki for everything robocode.
http://robowiki.net/cgi-bin/robowiki?GamePhysics for the physics of robocode
http://java.sun.com/j2se/1.5.0/docs/api/ for info on java (the API)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Math.html for the Math class API
http://java.sun.com/docs/books/tutorial/ for an in-depth Java tutorial
For the robocode API, go to the help menu in Robocode and click on robocode API

 if Statements

if(condition) {
 doThisStuffIfTrue;
}
else {
 doThisStuffIfFalse;
}
Ternary Operator (shorthand if statement):
condition ? doThisIfTrue : doThisIfFalse

Method Declarations
returnType methodName(argument,argument . . .)
{
 stuffToDoInMethod;
 return valueOfTypeSpecifiedAbove;
}
If the method returns nothing don’t write a return statement and
replace returnType with void
Arguments are declared like variables and are local to the method

Variables
varType varName;
Valid types include (capitalization matters):
int, long, float, double, char,
String, and boolean
Example:
int someInteger;

Loops
while loops:
while(condition)
{
 stuffToRepeat;
}
do-while loops
do
{
 stuffToRepeat;
}
while(condition);

for loops:
for(sentinel=initialValue;condition;updateStatment)
{
 stuffToRepeat;
}

Boolean Operators:
< (less than), > (greater than), == (equal to for
testing equality), <= (less than or equal to), >=
(greater than or equal to), != (not equal to).
Boolean Logic Operators (ordered by
precedence): && (AND), || (OR), ! (NOT)
You can group these operators with
parentheses.
To compare Strings, use
string1Name.equals(string2Name)

Java Math:
To add stuff, use +
To multiply use *
To subtract, use -
To divide, use /
To do modular arithmetic, use %
To raise to powers use
Math.pow(base,exponent)
Use parentheses to group terms
When you divide an integer by another integer,
it truncates; 5/2 is equal to 2
To prevent this, put a .0 after one of the
numbers
5.0/2 is equal to 2.5
Order of operations: parentheses, * and /
and %, + and -

Java Trig: See Useful Methods Quick Reference Sheet

Arrays
To declare an array variable: varTypeToHold[] arrayName;
To make a new array: arrayName=new varTypeToHold[arrayLength];
To access array elements (index is the number of the element that you want
starting from 0): arrayName[index]
To get an array’s length: arrayName.length

Java Shorthand: x+=y means x=x+y,x-=y means x=x-y,
x*=y means x=x*y, x/=y means x=x/y, x%=y means
x=x%y, x++ means x=x+1, x-- means x=x-1

Type Casting and Conversion Methods:
Type Casting (between primitive types):
(typeToConvertTo)thingToConvert

Conversion Methods: See Useful Methods
Quick Reference Sheet

Tutorial Version 1.4 Page 47

Useful Methods Quick Reference Sheet
See http://java.sun.com/j2se/1.5.0/docs/api/ for all Java methods. Note: the Math and
String classes contain many useful methods.

Radian/Degree Conversions:
Math.toDegrees(radianVal)
Math.toRadians(degreeVal)

Normalizing Angles:
The following method converts any angle to an equivalent angle between -π and π radians (equiv -180° and 180°)
Use it to compute the most efficient way to turn. For example, if you put in 3π/2 (same as 270°), it would return
-π/2 (same as -90°) because if you were turning right 3π/2 radians, you might as well turn left -π/2 radians which
would be more efficient.
robocode.util.Utils.normalRelativeAngle(angleInRads)

The following method returns 0 to 2π radians (equiv 0° to 360°) to turn angles greater than 2π or less than 0 into
“normal” angles. For example, if you put in -π/2, you would get 3π/2, which is the same direction but expressed
in “normal” terms.
robocode.util.Utils.normalAbsoluteAngle(angleInRads)

Java Trig Functions:
Note: In robocode (not Java in general), angles are counted clockwise from vertical and coordinates are
counted from the lower left corner of the screen (always positive). Also, all Java trig functions use radians.

Normal Trig Functions:
Math.sin(angleInRads) //returns the sine of given angle
Math.cos(angleInRads) //returns the cosine of given angle
Math.tan(angleInRads) //returns the tangent of given angle

Inverse Trig Functions:
Math.asin returns the arcsine of a given angle. Note: always returns a radian value from π/2 to -π/2. This
means it ALWAYS returns angles in the first or fourth quadrant.
Math.asin(sinOfAngle)

Math.acos returns the arccosine of given angle (returns 0 to π).
Math.acos(cosOfAngle)

Math.atan returns the arctangent of given angle (returns π/2 to -π/2).
Math.atan(tanOfAngle)

There is one more critical method: Math.atan2. It returns the θ portion of the polar representation of the
Cartesian point (x,y). Note the order of the arguments, first y, then x.
Math.atan2(y,x)

Conversion Methods:
String to Number:
WrapperClassName.parseVarType(StringToConv
ert)
Wrapper classes’ names are the capitalized and non-
abbreviated versions of their primitive types (e. g.
double’s wrapper class is Double, int’s is Integer,
etc.)

String to char:
nameOfString.charAt(index) or
nameOfString.charToCharArray()

Primitive Type to String:
String.valueOf(valueToConvert)

Primitive Type to Primitive Type: See Robocode/Java
Quick Reference Sheet

Useful String Methods (not including conversion methods):

nameOfString.length() Returns length of String
String1Name.equals(String2Name) Returns true if
the Strings are the same, else false
nameOfString.toUpperCase() Returns an upper case
version of the String
nameOfString.toLowerCase() Returns a lower case
version of the String
nameOfString.substring(startIndex) Returns a
substring of the String from startIndex to the end.
nameOfString.substring(startIndex, endIndex)
Returns a substring of the String from startIndex to
endIndex-1 inclusive

Tutorial Version 1.4 Page 48

Quick List of Trig Stuff:

B
Trigonometric Functions:
Sine A=a/c abbrev. sin
Cosine A=b/c abbrev. cos
Tangent A=a/b abbrev. tan
sin B=b/c
cos B=a/c
tan B=b/a

Inverses of Trigonometric Functions:
sin-1 (a/c) = arcsine (a/c) = A abbrev asin
sos-1 (b/c) = arccosine (b/c) = A abbrev acos
tan-1 (a/b) = arcsine (a/b) = A abbrev atan
asin (b/c) = B
acos (a/c) = B
atan (b/a) = B

Sign Problem: Inverse trig functions could return 2
possible values, so there is a convention that says to return
only the angle closer to 0°
Pythagorean Theorem:
In right triangle ABC, a2 + b2 = c2

a
c

b
A C

Radians:
Radians are the number radius lengths it takes
to cut off a given angle θ by going around a
circle.
Since C=πD=2πr, C/r=2π. This means that
there are 2π radius lengths in the
circumference of any circle, or that it takes 2π
radians to go all the way around a circle.
Radians/degree conversions:
r/π = d/180
Radians to Degrees:
d = 180r/π
Degrees to Radians:
r = πd/180

0° or 0π rad (equals 360° or 2π rad)

150° or 5π /6 rad

210° or 7π /6 rad

90° or π /2 rad

180° or π rad

270° or 3π /2 rad

45° or π /4 rad
30° or π /6 rad

225° or 5π /4 rad

135° or 3π /4 rad

315° or 7π /4 rad

120° or 2π /3 rad

330° or 11π /6
rad

300° or 5π /3
rad

60° or π /3 rad

240° or 4π /3 rad

θ

Common/Useful Trig Ratios:

θ° θ rad Sin Cos Tan

0 0 0 1 0

30 π/6 1/2 √3/2 √3/3

45 π/4 √2/2 √2/2 1

60 π/3 √3/2 1/2 √3

90 π/2 1 0 undef

Laws of Sines/Cosines
Use when you are given an oblique (non-right) triangle to solve

Law of Sines:
For any triangle ABC,
a/(sin A)=b/(sin B)=c(sin C)
Use if you are given AAS, ASA, or SSA (you can only find some parts with
SSA).
Always remember that if you know 2 angles, you know all 3.

Law of Cosines:
For any triangle ABC,
a2=b2 + c2 – 2bc∗cos(A)
b2=a2 + c2 – 2ac∗cos(B)
c2=a2 + b2 – 2ab∗cos(C)
Use if you are given SAS or SSS.
Always remember that if you know 2 angles, you know all 3.

C

b

A B

a

NOTE: in ROBOCODE, not Java in general, angles are
counted CLOCKWISE FROM VERTICAL instead of
counterclockwise from horizontal.

Polar coordinates: Coordinates of a
desired point, expressed (r, θ). r is the
radius of an imaginary circle centered
on the origin, θ is the number of
radians around the circle the point
you want is.

